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One proves the equivalence of the equations of the one-dimensional plane motion 
of an isotropic nonlinearly-elastic body and that of a perfectly conducting com- 
pressible fluid moving in an external magnetic field, the magnetic permeability 

of the fluid being an arbitrary function of the density and of the modulus of int- 
ensity of the magnetic field. For these models of the continuous medium one 
considers essentially the nonlinear problem of the transverse oscillations induced 
in an infinite layer by the periodic action of external tangential forces at one of 
the plane boundaries, while at the other one a perfect reflection of the waves is 
assumed. The singularity of the bahavior of the forced resonant oscillations are 
developed in the case when in the elastic body the velocity of the longitudinal 

waves is much larger than the velocity of the transverse waves and in the fluid 
the velocity of the sound exceeds by far the velocity of the Alfvkn waves. One 
establishes the relation between the amplitude of the constraining forces and 
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the degree of nearness of its frequency to the resonant frequency when weak 

shock waves appear in the layer. 

1. Nonllnrrrly elr#tlc lryer, The equations of the dynamics of an isotro- 
pic elastic body for a one-dimensional motion with plane symmetry is written in the 
form 

SW, 

POX 
=+!-p,,, poaz=+pli (i=Z 3) (1.1) 

p ,, = potIF / as, p1i = POhidF Id (ha 1% SS~W~/@, hi=awiIaE 

Here wl, W2, ws are the components of the displacement vector of a Lagrange particle 
in the Cartesian system of observation coordinates 9, x2, x3; g is the Lagrange coord- 
inate which in the initial unloaded state p 1 = pi = 0 for s = h = 0 coincides with 

the Cartesian coordinate; p. is the initial density; F (s, h2 / 2) is the isothermal den- 

sity of the free energy. 

The equations (1.1) are obtained from the general equations of the dynamics of an elastic 
body [l], which in a Cartesian system of reference have the form 

where &I, &s, f3 are the Lagrange coordinates and Ejk are the components of the strain 

tensor. In the derivation of (1.1) one takes into account that in the two-dimensional 
case the invariants of the strain tensor can be expressed in terms of s and hs, and the 
nonzero components ejk have the form 

eu=r+(r~+hs)/2, slk=hk/2 (k = 2,3) 

In the following we restrict ourselves to the case h3 = 0, h, = h. Then, from the 
system (1.1) for the displacements, we obtain the following equations for the longitud- 
inal stress pb and for the shearing stress pL : 

(1.2) 

F,, G 6°F / (8h)2, F,, zz a2F / (kdh), & = F,, - (F$ i F,, 

The equations of the characteristics of the systems (1.2) (1.1) (for ha = 0) are 

(~)a_~[F,,+Fhht1/(F.s-Fhh)‘+4F%1 (1.3) 

Here dE / dt is the propagation velocity of wave fronts of the deformations and stresses. 
We assume that the elastic body is such that F,, >> F,,, > Fhh in the domain of 

the values s and h, characteristic for the problems under investigation. Then it follows 

from_(l. 3) that the propagation velocity of the “fast longitudinal” waves is equal to 

O&9 and the velocity of the “slow transverse” waves is determined from the relation 
(1.2). where u2L = dF (s, h) I dh along the curve LIF I 8s = const. 

We consider a layer of an elastic material of thickness L, which rests without separa- 
tion on an absolutely rigid foundation without tangential friction forces; on the upper 
boundary of the layer we have a periodic tangential force Asinot and a constant normal 
load 40. This corresponds to the boundary conditions for the system(l.l) or (1.2) 
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PI = 0, W,=O for c=O (1.4) 
PII = 40, PI = A sin& for E; ,L 

We will look for a periodic solution of the formulated problem, for whose realization 
it is necessary that the layer should not accumulate energy, i.e. the work of the external 

tangential force over a period be equal to zero 
xl0 

s A sin ot $G=O (1.5) 
--x -10 

If the amplitude of the exciting force is sufficiently small, then the desired solution 
can be obtained from the solution of the linear problem with linearized boundary cond- 

itions. This is a stationary transverse wave 

pI = A sin ot sin W I a) P II = Qos a=a~(h=o) (1.6) 
sin (0L / a) ’ 

However, when the frequency o approaches the resonance frequency o* = ma i L 
(n = f,2, . ..) then inside the layer one obtains infinite stresses. From here follows the 
essential nonlinearity of the formulated problem near the resonance even for a small 

amplitude of the exciting force. 
In view of the fact that the problem has a characteristic length L and a chracteristic 

time T = 2~ / O, where L I T - al < ai , the solution can be sought in the form 
of an expansion with respect to two small parameters F,,, / F,, and F,, I F,,. 

In the first approximation the longitudinal stresses turn out to be constants; this corr- 
esponds to the absence of the radiation of longitudinal waves. The relations of the long- 
itudinal and the transverse deformations turn out to be finite by virtue of the equality 
p 1, (s, h) = q. = COnSt. Expressing s in terms of h, we obtain C& = uy (h), 

From (1.1) we obtain rhe equation for the shearing displacement 

(1.7) 

From (1.2) we obtain the equation for the shear stress 

The Ee (1.7) can be written in two equivalent forms 

Hence it follows that 

a,_ (h) dh = 2a P* Cc,) (W 
” 

where C+ is found from the equation E = E (t, c t),which determines the family of 
the integral curves of the equation dE / dt = f al’(h). 

In view of the periodicity of the desired solution, the functions cp- and ‘pf have to 
be periodic, if for the parameters of the families of characteristics we take the moment 

of the intersection of the corresponding characteristic with the line g = 0. From the 
conditions (1.4) for E = 0 it follows that 
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cp- (c) = jc+ (c) = cp (c) (1.9) 
We investigate now the case of a weakly nonlinear material, for which the free energy 

is an analytic function of the invariants J 1, J,, J, [l] at the point J, = J2 = J, = 
=o. It can be shown that in this case the function al (h) can be expanded in a series 

with even exponents. We restrict ourselves to the first two approximations 

a_L (h) z a (1 + 3ah2) (1.10) 

From the equations of the characteristics we have, to within terms Nh4 

(A+\*) I 2 
c, = h + 3a s I p (h) - ‘p (2t - A)]2 dr 

i. 

Y 
c_ = p - 3a s [ :) (p) - 4 (2s - I’)]~ dT (1.11) 

(ASP) I2 
A = t - E I a, p = t + EJa 

From (1.8), taking into account (1.9) we obtain 

h -t c:h3 = .; (c_) - ‘(c+) 

The function cp is found from the conditions (1.4) for E = L 

Poa2 (h + 2ah”) = Asinwt 

(1.12) 

Substituting here the solution of (1.12) for E : L, we obtain for cp the functional 
equation 

poa2 [cp (c_) - (0 (c,) $ a (v (h) - cp (p))“l = Asinot (1.13) 

For a small deviation of the frequency of the exciting force from the resonance frequ- 
ency, we put in the nonlinear terms of (1.13) (I) = CO*, X :: t - nrr / o, p = 
= t -+ hn / CO; we replace the difference cp (c_) - cp (c,) by the expression 

- o-12nndqz (t - rut (o)/dt [3arp* (t - nx i (0) im 3~~9 - (w - 64 / o,] 

Here we have made use of the condition 
(1.14) 

+z/m xl0 

s 
cp (t) dt = 0 

i 
9 = -$ 1 cp”(t)dt) (1.15) 

--n/o --n/o 

and we have taken into account the periodicity of CF, (t). 
We discard the last term in the left-hand side of (1.13) since it is proportional to 

(0 - O*)“. Integrating (1.13) with respect to time, we obtain finally 

‘p3 (t) + cp (t) [352 i- 61 -1 v cm at = 0 

6 zz - (a(J)*)-’ (0 - o*), v - (2ma&$z~)-’ (-l)nA (1.16) 

If at the boundary 6 = L instead of the condition pii r= q. we put w1 = 0, then in- 
stead of (1.16) we obtain the equation 

Cp3 (t) + cp (t) [cl + Sl + Y c0.s ot = 0 (1.17) 

Thus, taking account of a small nonlinearity in the resonance leads to the solution 
(1.8). where the functions c+ and c_ are given by the formulas (1.11). 

Assume that the function cp has a finite discontinuity at some point (cp (t) is a 
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discontinuous function in some range of the frequency near the resonance. see Sect. 3). 
For the stability (evolution) of the discontinuity it is necessary that it catches up with 
the disturbances ahead and that it be caught up by disturbances behind the discontinuity. 
At such discontinuities, from the conservation of momentum it follows that 

D2 = a2 II + CI (h2 (1) + 42,h + h2(2,)l 

where D is the velocity of the shock wave with respect to the particles, hC1) is the value 
of h ahead of the shock, ht2) is the value of h behind the shock. 

In view of the fact that at the evolutionary discontinuities we have a~(,) ( D2 < 
< a;(,) at the weak shock waves we must have either h,,,l h(,) > 1 or hCl) / h,,,< 
< -2. At these discontinuities the longitudinal stress remains continuous, therefore 
we neglect the radiation of the longitudinal waves on the weak shearing shock waves. 

Expressions (1.8) may be linearized in zeroth approximation, while the function CJ (t) 
may be determined as before from equations (1.16), (1.17). However in the linear range 

both shock waves and rarefaction waves of the nonlinear solution (1.8) will result in dis- 
continuous solutions. In order to distinguish the rarefaction waves from the shock waves 
in the linear approximation, it is necessary to varify the criterion of evolution: if this 
criterion is not satisfied, then the discontinuity represents the limiting form of the rare- 
faction wave, continuous in the nonlinear approach (1.8) - (1.11). The nonlinear solu- 

tion (1.8) is nonunique in the vicinity of the evolutionary discontinuity. In this case 

the construction of a unique discontinuous solution is carried out with the aid of formu- 

lation of superfluous branches. 

2. Layer of a perfectly conducting fluid [2], The ponderomotive 
force in magnetizing media in the absence of polarization and space charge is equal to 

$ (jxB) &(B,cH~-H.PH~) 

Starting from this, one can show that the one-dimensional plane motion of a magneti- 
zing compressible perfectly conducting fluid in an external magnetic field B,, applied 
orthogonal to the plane of symmetry, can be described in Lagrange coordinates by the 

equations 

From the equations of heat flow in the reversible adiabatic case it follows 

au =~a+--(p+ g)a+- (2.2) 

where w is the internal energy function of the fluid including the energy of the magnetic 
field per unit of mass. 

It follows from (2.2), (2.1) that if we introduce the potentials Wi (i = 2, 3) for the 
. new unknown functions hi s Bi (1 + a) / B,. hi = dwi / dg, then the Eqs. (2.1) 

for wi, w2, Ws will have the form (1.1) provided the function u depends on the comp- 

onents of the vector B through its modulus. 
In the absence of the magnetization of the fluid, the system (2.1) is converted into 

the system of equations of the one-dimensional magnetohydrodynamics [3& In this 
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particular case the function u takes the form 

u (s, h2 1 2) = U (s) + h2B,2(8~p0 + 8np,s)-1 

where U (s) is the internal energy of the barotropic fluid. 
In the given notation the equations of the characteristics of the system (2.1) are (1.3). 

We assume that the velocity of sound in the weakly compressible fluid exceeds by far 
the velocity of the transverse AlfvCn waves U”J_ (in the presence of magnetization 

a: # B2/4np,). 
In this case the boundary conditions (1.5) acquire another interpretation: the layer of 

the described fluid is enclosed between two infinite conducting planes. One of the planes 

is fixed and de-energized and on the other a periodic current is supplied and a constant 
normal load is applied. If the frequency of the current approaches the resonant frequency, 

then even for small amplitudes of the current, the problem becomes nonlinear. Due to 

the method presented in Sect. 1, in the case of a weak nonlinearity, the determination 
of the solution reduces again to the analysis of the algebraic equation (1.16). 

If instead of the transverse oscillations on the boundary E = L only longitudinal osci- 
llations are stimulated according to a harmonic law, then in the case of a weak nonlin- 

earity the determination of the periodic solution of this gas dynamics problem (By = 0) 
at resonance, reduces, as it has been shown by Chester [4], to the analysis of a quadratic 
equation. 

3, Invertigrtion of equation (1.16). It is convenient to write Eq. (1.16) 
in the form 

y” + 3 sign (3 Q + 5) y + 2y cos Ot = 0 
(3.1) 

y 3 1 3Q + 6 I-“1 1/TJ7, y = 2 1 D + 5 / 31-7 Y 

It is necessary to distinguish three cases 

P. 39 + f < 0, I y I d 1; P. 39 + f < 0, I y I > 1; 3”. 3Q + 5 > 0 

Case 1. Equation (3.1) for 1 y I < 1 determines three continuous functions 

Yk (t) = - 2 sind y cos [V3 arccos ( IyI cos at) f 2xk / 31 (k = 1, 2, 3) 

From the three solutions only y, (t) satisfies condition (1.15). For the determination 
of Q we have in this case the finite relation 

P = (3n)-’ (45 + 128) 5 cos2 [I/S arccos (I T I co3 9) f 4~~/3] d6 

0 

From the smooth pieces of the continuous solutions y, (t) and y, (t) one can construct 
uniquely discontinuous solutions satisfying the condition (1.15) and having a minimum 

number of discontinuities, by enlisting additional conditions of evenness of the discon- 
tinuous solution (then the condition (1.6) of no energy, supplied to the system over a 
period, is automatically satisfied) 

(3.2) 

. the first discontinllous solntion. Q satisfies the relation 
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nl2o 

3ni-A =-(I,f3Q) 5 a’ (t) dt 
--x/20 

For the second xlso 

sIrsa=-((5f3s-J) 5 yd2 (1) dt 
--nl2o 

For 1 y 1 4 1 the functions Yk (t) have the asymptotics 

ot 
yl (f) = Je - -r co.3 7 ) 

cot 
yo (t) = .y co.3 3, ?,O (t) = - v/s - T cos y 

This means that the solution y, (t) tends to the ordinary linear solution. The discon- 
tinuous solutions tend to periodic solutions of rectangular form. The discontinuities are 
transfered with velocity a. 

If IyI = 1, weobtain 

1/k (r) = - 2 sign y cos (l/s (ot f 2nk)] (k = i, 2, 3) (3.3) 

The continuous solution is constructed from the various functions Yk (1) and it has a dis- 
continuity of the derivative at ot= nm (Fig.l, curve ~0). 

-2 

Fig. 1. 

Fig. 2. 

I - 2 sign y ch 61, 

The other discontinuous solution, in add- 
ition to the finite discontinuities for 
ot =n I 2 + nm has the weak discon- 

tinuities for at = nm (m = 0, f 1, . ..) 

(Fig.1, curve Y,). 
Case 2. Equation (3.1) determines 

one periodic real multiple-valued func- 
tion y(t). Its form is represented in Fig. 2. 

Since y (t) is multiple-valued, there 
is no continuous solution and the discon- 
tinuous solution is given by the formulas 
- cc < Ot f 00 

ao<ot<n/2 (3.4) Y (t) = 
- 2 sign r cos 02, 

-2signrcos(Gz+ti/3), -n//<wt<n--so 

2 sign r ch 61, n-Go<ot<n++o 

6, = arccos (y) -1, 6, = V3 arcch (y cos ot) 8, = l/g arcos (y cos ot) 

For the continuous solution 

y = 2 1(93x - 9 )/3)-’ l-l 15 If” 

For one of the discontinuous solutions 
(Fig. 1. curve Y,) the relation between 
the amplitude of the external perturba- 

tion and the deviation of the frequency 
from the resonance frequency has the 

form 

Y = 2 [ (9n + 9 JO)-1 x 1 5 I 13’Z 
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Case 3. The solution of (3.1) is unique, single-valued and continuous 

Y 0) = -2 sh [r/g arcsh (y cos @Ol (3.5) 

In particular, for ]y 1 - CC from (1.16) we obtain 

cp (t) = -$GGt (3.6) 

In this case TT 

Q = n-ly% 
s 

cos”’ e&3, r, =-3Q 

0 

For the resonance 5 = Oj and for y we obtain the equation 
7. 

?t 

-= 

4 s 1 ShS +I arcsh (y cos 0)] 
i 

dtl 

0 

If I ‘) 1 e 1, then solution (3.5) reduces to the linear solution. 

4. Phyllcrl interpretation of the re#ult#. In the nonlinear theory near 
resonance, the amplitudes of the oscillations of the shear deformations and the strength 
of the magnetic field have, relative to the magnitude of the external field B,, an 

order equal to ~‘18 = con& [A (cz~~a~)-~]~~~. The transverse oscillations cause the app- 
earance of longitudinal oscillations. 

We assume that the amplitude of the exciting force is fixed. We follow the evolution 
of the shape of the oscillations with the variation of the frequency. Let us assume that 

o decreases monotonically. For w > O* a nonlinear smooth oscillation takes place 

in the layer, described by (3.5). Oscillations without discontimrities will occur also in 
the case of resonance w = w* and for o < O* down to the frequency aa 

0 a= w* - p=z (1 = [ annA2(p20aL3)-11i’~) 

The values of the constant p are given below for different boundary conditions at E = 
= L: in the upper line for the condition prr = qo; in the lower line for wr = 0. The 
formulas hold under the condition 2 (( 1 . 

B” Bd Bb 

$-q&q- (n - ,‘3) 9/4 9(4n)+r+ 73) 

(5n--3)r3)(4lr)-r 5/4 5(4V’(fi + 31’3) 

For the frequency ma (see (3.6)) the profile of the wave has a vertical tangent at the 
time w’t = rt / 2 + nm (m + 0, +I , ..). For the frequencies o < ma the motion 

in the layer can be accomplished with weak shock waves. Such oscillations are described 
by the solution (3.4) (Fig.2) up to the frequency o’ = 0, - pbl and by formula (3.2) 
for y, in the case 6) < 6&, . For 0 = tib the form of this solution is represented in 

Fig. 1 (curve y,) . 
For the frequency wc = o* - PC/ (wc < ma), in addition to the described solution, 

there emerges a continuous solution wIih weak discontinuities at act = 3tm (Fig.1, 

curve r/b), i.e., a peculiar bifurcation of the solution takes place. For o < oc the 
continuous solution is described by the analytic function y, (t). In addition to these two 
solutions, for the frequency gd = w* - fidl there emerges a third discontinuous 
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solution, having jumps at . odt = n / 2 + nm (Fig. 1, curve y,.) For frequencies 
smaller than ,@d, the weak discontinuities of this solution disappear and the solution is 
described by formula (3.2) for J/b. 

Thus, the periodic solution of Eq. (1.7) with the boundary conditions (1.5) is unique 
for o > 0’; there are two solutions for oc > o > c# (one is discontinuous, the other 
is continuous); three solutions (one continuous, two discontinuous) are possible for 
w < w” 

The author expresses his thanks to A. G. Kulikovskii for valuable advice and for the 
discussion of the results. 
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The problem of the effect of an absolutely rigid stamp with a wedge planform 
on an elastic space is considered. There is assumed to be no friction in the do- 

main of contact between the stamp and the half-space. 
Galin first considered this problem in Cl]. The effect of the stamp on the half- 

space was accompanied, in that paper, by the effect of some loading outside it. 
A characteristic singularity of this solution is the fact that the contact pressures 

p (t, (p) have a r-l singularity at the wedge apex. 
Later, Rvachev attempted to solve the mentioned problem without the outside 

loading @I. He reduced it to an eigenvalue problem for a certain differential 
equation on a sphere and utilized the Galerkin method. The Rvachev solution 
has a ry-l singularity at the wedge apex, where 0 < y (CY) < 1, and 2a is the 
wedge angle. 

In this paper the problem of a wedge-shaped stamp with an arbitrary base is 
apparently successfully solved analytically for the first time by utilizing the 


